
Stable sets in {ISK4,wheel}-free graphs

Martin Milanič1, Irena Penev2, Nicolas Trotignon3

June 16, 2015

Algorithmic Graph Theory on the Adriatic Coast
Koper, Slovenia

1University of Primorska, Slovenia
2LIP, ENS de Lyon, France
3LIP, ENS de Lyon, France

1/22

Definition
An ISK4 in a graph G is an induced subdivision of K4 in G . A
graph is ISK4-free if it contains no induced subdivision of K4.

Remark: An ISK4-free graph is in particular K4-free, so it has no
cliques of size greater than 3.

2/22

Definition
An ISK4 in a graph G is an induced subdivision of K4 in G . A
graph is ISK4-free if it contains no induced subdivision of K4.

Remark: An ISK4-free graph is in particular K4-free, so it has no
cliques of size greater than 3.

2/22

Definition
A wheel is a graph that consists of a chordless cycle and an
additional vertex that has at least three neighbors in the cycle. A
graph is wheel-free if it contains no wheel as an induced subgraph.

Definition
A graph is {ISK4,wheel}-free if it is both ISK4-free and wheel-free.

3/22

Definition
A wheel is a graph that consists of a chordless cycle and an
additional vertex that has at least three neighbors in the cycle. A
graph is wheel-free if it contains no wheel as an induced subgraph.

Definition
A graph is {ISK4,wheel}-free if it is both ISK4-free and wheel-free.

3/22

Theorem [Milanič, P., Trotignon, 2015+]
There is an algorithm with the following specifications:

Input: A weighted {ISK4,wheel}-free graph (G ,w) a;
Output: α(G ,w) b;
Running time: O(n7), where n = |V (G)|.

aThe weight function w assigns a non-negative integer weight w(v) to each
vertex v of G .

bα(G ,w) is the maximum weight of a stable set (i.e. a set of pairwise
non-adjacent vertices) of G with respect to w .

4/22

State of the art for wheel-free graphs:
1 recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
2 maximum stable set problem is NP-complete (easy).

State of the art for ISK4-free graphs:
1 unknown complexity of the following problems: recognition,

maximum stable set, coloring;
2 decomposition theorem (Lévêque, Maffray, Trotignon, 2012).

State of the art for {ISK4,wheel}-free graphs:
1 decomposition theorem for {ISK4,wheel}-free graphs

(Lévêque, Maffray, Trotignon, 2012);
2 polynomial-time recognition algorithm for {ISK4,wheel}-free

graphs (Lévêque, Maffray, Trotignon, 2012);
3 {ISK4,wheel}-free graphs are 3-colorable + polynomial-time

algorithm to 3-color them (Lévêque, Maffray, Trotignon,
2012).

5/22

State of the art for wheel-free graphs:
1 recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
2 maximum stable set problem is NP-complete (easy).

State of the art for ISK4-free graphs:
1 unknown complexity of the following problems: recognition,

maximum stable set, coloring;
2 decomposition theorem (Lévêque, Maffray, Trotignon, 2012).

State of the art for {ISK4,wheel}-free graphs:
1 decomposition theorem for {ISK4,wheel}-free graphs

(Lévêque, Maffray, Trotignon, 2012);
2 polynomial-time recognition algorithm for {ISK4,wheel}-free

graphs (Lévêque, Maffray, Trotignon, 2012);
3 {ISK4,wheel}-free graphs are 3-colorable + polynomial-time

algorithm to 3-color them (Lévêque, Maffray, Trotignon,
2012).

5/22

State of the art for wheel-free graphs:
1 recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
2 maximum stable set problem is NP-complete (easy).

State of the art for ISK4-free graphs:
1 unknown complexity of the following problems: recognition,

maximum stable set, coloring;
2 decomposition theorem (Lévêque, Maffray, Trotignon, 2012).

State of the art for {ISK4,wheel}-free graphs:
1 decomposition theorem for {ISK4,wheel}-free graphs

(Lévêque, Maffray, Trotignon, 2012);
2 polynomial-time recognition algorithm for {ISK4,wheel}-free

graphs (Lévêque, Maffray, Trotignon, 2012);
3 {ISK4,wheel}-free graphs are 3-colorable + polynomial-time

algorithm to 3-color them (Lévêque, Maffray, Trotignon,
2012).

5/22

Theorem [Lévêque, Maffray, Trotignon, 2012]
If G is an {ISK4,wheel}-free graph, then either:

G is a series-parallel grapha, or
G is the line graph of a chordless graphb of maximum degree
at most three, or
G is a complete bipartite graph, or
G admits a clique-cutset, or
G admits a proper 2-cutset.

aseries-parallel = no subdivision K4 as a subgraph
bchordless = all cycles are induced

A 6= ∅ B 6= ∅

c1

c2

Neither A ∪ {c1, c2} nor B ∪ {c1, c2}
induces a path between c1 and c2.

Proper 2-cutset:

6/22

A 6= ∅ B 6= ∅

c1

c2

A 6= ∅

c1

c2

B 6= ∅

(G,w)

x

c1

y

z

c2

wB(x) = α(GA \ {c1, c2}, w)

wB(c1) + wB(c2) = α(GA, w)

wB(c1) + wB(z) = α(GA \ {c2}, w)

wB(c2) + wB(y) = α(GA \ {c1}, w)

wB(c2) = w(c2)

(GA, w) (GB, wB)

Attempt at handling
proper 2-cutsets:

The weight of the gem

gem vertices that lie

inside a maximum weighted

stable set of (GB, wB) is

supposed to be equal to the

weight of the part of a

maximum weighted stable

set of (G,w) that lies in

(GA, w).

gem

Need:

α(GB, wB) = α(G,w)

7/22

Trigraphs to the rescue!

Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”
There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).
We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel}-free trigraphs.

Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.

8/22

Trigraphs to the rescue!

Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”

There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).
We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel}-free trigraphs.

Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.

8/22

Trigraphs to the rescue!

Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”
There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).

We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel}-free trigraphs.

Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.

8/22

Trigraphs to the rescue!

Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”
There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).
We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel}-free trigraphs.

Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.

8/22

Trigraphs to the rescue!

Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”
There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).
We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel}-free trigraphs.

Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.

8/22

Definition
A trigraph is a generalization of a graph in which there are three
types of adjacency:

strongly-adjacent pairs (“edges”),
strongly anti-adjacent pairs (“non-edges”),
semi-adjacent pairs (“optional edges” or “pairs of
undetermined adjacency”).

An adjacent pair is a pair or strongly-adjacent or semi-adjacent
vertices. An anti-adjacent pair is a pair of strongly anti-adjacent or
semi-adjacent vertices.

9/22

Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

Definition
A realization of trigraph is any graph obtained by turning each
semi-adjacent pair into an edge or a non-edge. So a trigraph with
m semi-adjacent pairs has 2m realizations.

realization

Definition
The full realization of trigraph is the graph obtained by turning all
its semi-adjacent pairs into edges.

10/22

Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

Definition
A realization of trigraph is any graph obtained by turning each
semi-adjacent pair into an edge or a non-edge. So a trigraph with
m semi-adjacent pairs has 2m realizations.

realization

Definition
The full realization of trigraph is the graph obtained by turning all
its semi-adjacent pairs into edges.

10/22

Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

Definition
A realization of trigraph is any graph obtained by turning each
semi-adjacent pair into an edge or a non-edge. So a trigraph with
m semi-adjacent pairs has 2m realizations.

realization

Definition
The full realization of trigraph is the graph obtained by turning all
its semi-adjacent pairs into edges.

10/22

Definition
A trigraph is ISK4-free (resp. wheel-free, {ISK4,wheel}-free) if all
its realizations are ISK4-free (resp. wheel-free, {ISK4,wheel}-free).

realizations

The trigraph is not wheel-free

because it has a realization that

is not wheel-free.

11/22

Definition
A clique in a trigraph is a set of pairwise adjacent (possibly
semi-adjacent) vertices, and a stable set is a set of pairwise
anti-adjacent (possibly semi-adjacent) vertices. A strong clique
(resp. strongly stable set) is a clique (resp. stable set) with no
semi-adjacent pairs.

clique (not strong)stable set (not strong)

12/22

We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

Let’s define all this!

Definition
A trigraph is basic if it is either

a series-parallel trigraph (i.e. its full realization is a
series-parallel graph), or
a line trigrapha of a chordless graph of maximum degree at
most three, or
a complete bipartite graph.

aG is a line trigraph of a graph H if the full realization of G is the line graph
of H, and no semi-adjacent pair of G is in a triangle.

13/22

We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

Let’s define all this!

Definition
A trigraph is basic if it is either

a series-parallel trigraph (i.e. its full realization is a
series-parallel graph), or
a line trigrapha of a chordless graph of maximum degree at
most three, or
a complete bipartite graph.

aG is a line trigraph of a graph H if the full realization of G is the line graph
of H, and no semi-adjacent pair of G is in a triangle.

13/22

We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

Let’s define all this!

Definition
A trigraph is basic if it is either

a series-parallel trigraph (i.e. its full realization is a
series-parallel graph), or
a line trigrapha of a chordless graph of maximum degree at
most three, or
a complete bipartite graph.

aG is a line trigraph of a graph H if the full realization of G is the line graph
of H, and no semi-adjacent pair of G is in a triangle.

13/22

Definition
A trigraph is connected if its full realization is connected, and
otherwise, it is disconnected. A cutset of a trigraph is a (possibly
empty) set of vertices whose deletion yields a disconnected
trigraph.

cutset cutset

full
realization

14/22

Theorem [Milanič, P., Trotignon, 2015+]
Every {ISK4,wheel}-free trigraph is either basic or admits a
clique-cutset (i.e. a strong clique that is a cutset) or a proper
2-cutset s.t. one of the induced “blocks of decomposition” is basic.

A 6= ∅ B 6= ∅

c1

c2

Proper 2-cutset:

c1c2 is an anti-adjacent pair

(possibly semi-adjacent)

G is connected, and neither

A 6= ∅

c1

c2

B 6= ∅

c1

c2

G

GA GB

Fact: If G is {ISK4,wheel}-free,
then so are GA and GB .

blocks of

decomposition

c1 nor c2 is a cut-vertex.

15/22

Theorem [Milanič, P., Trotignon, 2015+]
Every {ISK4,wheel}-free trigraph is either basic or admits a
clique-cutset (i.e. a strong clique that is a cutset) or a proper
2-cutset s.t. one of the induced “blocks of decomposition” is basic.

Proof: Imitate the proof of the decomposition theorem for
ISK4-free graphs (Lévêque, Maffray, Trotignon, 2012). Generalize
to trigraphs, but(!) consider only the wheel-free case.

The “jump” to trigraphs doesn’t complicate the proof much;
the restriction to the wheel-free case significantly simplifies it.

A bit of extra work to get the “extreme” decomposition theorem.
This is algorithmic! There is a polynomial-time algorithm
that, given an {ISK4,wheel}-free trigraph G , either determines
that G is basic, or finds an “extreme decomposition” of G via
a clique-cutset or a proper 2-cutset. Q.E.D.

16/22

Onward to weighted trigraphs!

Idea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).
Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.
However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G ,w) into our algorithm for trigraphs and get an “ordinary”
α(G ,w) for weighted graphs.

17/22

Onward to weighted trigraphs!
Idea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).

Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.
However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G ,w) into our algorithm for trigraphs and get an “ordinary”
α(G ,w) for weighted graphs.

17/22

Onward to weighted trigraphs!
Idea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).
Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.

However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G ,w) into our algorithm for trigraphs and get an “ordinary”
α(G ,w) for weighted graphs.

17/22

Onward to weighted trigraphs!
Idea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).
Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.
However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G ,w) into our algorithm for trigraphs and get an “ordinary”
α(G ,w) for weighted graphs.

17/22

Onward to weighted trigraphs!
Idea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).
Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.
However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G ,w) into our algorithm for trigraphs and get an “ordinary”
α(G ,w) for weighted graphs.

17/22

Definition
A weighted trigraph is an ordered pair (G ,w) s.t. G is a trigraph,
and w is a weight function for G s.t.

to each vertex v of G , w assigns a non-negative integer
weight w(v), and
to each semi-adjacent pair uv of G , w assigns three
non-negative integer weights, w(uv), w(u, v), and w(v , u),
and these weights satisfy w(u, v),w(v , u) ≤ w(uv).

6 210

1

3

7

1

06

8

0 217

1

1

11

5 5 2

u v

w(u)
w(u, v)

w(uv)
w(v, u)

w(v)

11

18/22

Definition
The weight of a set S of vertices in a weighted trigraph (G ,w) is
the sum of the following three quantities:

the sum of all w(u) s.t. u ∈ S;
the sum of all w(u, v) s.t. uv is a semi-adjacent pair of G
with u ∈ S and v /∈ S;
the sum of all w(uv) s.t. uv is a semi-adjacent pair of G with
u, v /∈ S.

α(G ,w) is the maximum weight of a stable set of (G ,w).

6 210

1

3

7

1

06

8

0 217

1

1

11

5 5 2

11

S

weight of S in (G,w):

(1+3+11)+5+17 = 37

(G,w)

S ′

weight of S ′ in (G,w):

(3 + 11) + (2 + 5) + 17 = 38

19/22

Semi-adjacent pairs can imitate gems! (But without increasing the
number of vertices, and without introducing wheels.)

a

b

a

b

d

c

e

c

e

d

weighted graph

weighted trigraph

c, d ≤ e

20/22

Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:
1 Check if G is basic, and if so, find α(G ,w) directly, and stop.

This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.

21/22

Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:

1 Check if G is basic, and if so, find α(G ,w) directly, and stop.
This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.

21/22

Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:
1 Check if G is basic, and if so, find α(G ,w) directly, and stop.

This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.

21/22

Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:
1 Check if G is basic, and if so, find α(G ,w) directly, and stop.

This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.

21/22

Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:
1 Check if G is basic, and if so, find α(G ,w) directly, and stop.

This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.

21/22

Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:
1 Check if G is basic, and if so, find α(G ,w) directly, and stop.

This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.

21/22

That’s all.

Thanks for listening!

22/22

