Stable sets in {ISK4,wheel}-free graphs

Martin Milani¢!, Irena Penev?, Nicolas Trotignon3

June 16, 2015

Algorithmic Graph Theory on the Adriatic Coast
Koper, Slovenia

YUniversity of Primorska, Slovenia
2LIP, ENS de Lyon, France
3LIP, ENS de Lyon, France

1/22

Definition

An ISK4 in a graph G is an induced subdivision of K4 in G. A
graph is ISK4-free if it contains no induced subdivision of Kj.

2/99

Definition

An ISK4 in a graph G is an induced subdivision of K4 in G. A
graph is ISK4-free if it contains no induced subdivision of Kj.

Remark: An ISK4-free graph is in particular Ky-free, so it has no
cliques of size greater than 3.

2/99

Definition

A wheel is a graph that consists of a chordless cycle and an
additional vertex that has at least three neighbors in the cycle. A
graph is wheel-free if it contains no wheel as an induced subgraph.

2/99

Definition

A wheel is a graph that consists of a chordless cycle and an
additional vertex that has at least three neighbors in the cycle. A
graph is wheel-free if it contains no wheel as an induced subgraph.

Definition
A graph is {ISK4,wheel}-free if it is both ISK4-free and wheel-free.

2/99

Theorem [Milani¢, P., Trotignon, 2015+

There is an algorithm with the following specifications:
@ Input: A weighted {ISK4,wheel}-free graph (G, w) ?;
o Output: oG, w) b;
@ Running time: O(n"), where n = |V/(G)|.

“The weight function w assigns a non-negative integer weight w(v) to each
vertex v of G.

ba(G, w) is the maximum weight of a stable set (i.e. a set of pairwise
non-adjacent vertices) of G with respect to w.

a4/29

State of the art for wheel-free graphs:
@ recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
@ maximum stable set problem is NP-complete (easy).

5/99

State of the art for wheel-free graphs:
@ recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
@ maximum stable set problem is NP-complete (easy).

State of the art for ISK4-free graphs:

© unknown complexity of the following problems: recognition,
maximum stable set, coloring;
@ decomposition theorem (Lévéque, Maffray, Trotignon, 2012).

5/99

State of the art for wheel-free graphs:
@ recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
@ maximum stable set problem is NP-complete (easy).

State of the art for ISK4-free graphs:
© unknown complexity of the following problems: recognition,
maximum stable set, coloring;
@ decomposition theorem (Lévéque, Maffray, Trotignon, 2012).

State of the art for {ISK4,wheel}-free graphs:

@ decomposition theorem for {ISK4,wheel}-free graphs
(Lévéque, Maffray, Trotignon, 2012);

@ polynomial-time recognition algorithm for {ISK4,wheel}-free
graphs (Lévéque, Maffray, Trotignon, 2012);

© {ISK4,wheel}-free graphs are 3-colorable 4+ polynomial-time
algorithm to 3-color them (Lévéque, Maffray, Trotignon,
2012).

5/99

Theorem [Lévéque, Maffray, Trotignon, 2012]
If G is an {ISK4,wheel}-free graph, then either:

@ G is a series-parallel graph?, or

o G is the line graph of a chordless graph® of maximum degree
at most three, or

@ G is a complete bipartite graph, or
@ G admits a clique-cutset, or

@ G admits a proper 2-cutset.

“series-parallel = no subdivision Ky as a subgraph
bchordless = all cycles are induced

A Neither AU {cy,c2} nor BU {cy,ca}
m‘ induces a path between ¢; and ca.

A#£D B#0

Proper 2-cutset:

6/22

Attempt at handling
proper 2-cutsets:

(G, w)

A#£D

(Ga,w)

A0

The weight of the gem

gem vertices that lie

inside a maximum weighted
stable set of (Gp,wg) is
supposed to be equal to the
weight of the part of a
maximum weighted stable
set of (G, w) that lies in
(Ga,w).

B#40 Need:
a(Gp,wp) = a(G,w)

‘ (Gp,wp)

B#0
wp(er) + ws(er) = a(Ga,w)

wa(er) + wa(2) = a(Ga\ {2} w)

wa(ez) + waly) = a(Ga\{er}, w)

wa(@) = a(Ga\ fer, 2}, w)

wg(c2) = w(c)

7/99

Trigraphs to the rescue!

/299

Trigraphs to the rescue!

@ Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”

/299

Trigraphs to the rescue!

@ Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”

@ There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).

/299

Trigraphs to the rescue!

@ Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”

@ There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).

o We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel }-free trigraphs.

/299

Trigraphs to the rescue!

@ Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”

@ There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).

o We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel }-free trigraphs.

e Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.

/99

A trigraph is a generalization of a graph in which there are three
types of adjacency:

@ strongly-adjacent pairs (“edges”),

@ strongly anti-adjacent pairs (“non-edges”),

@ semi-adjacent pairs (“optional edges” or “pairs of
undetermined adjacency”).

An adjacent pair is a pair or strongly-adjacent or semi-adjacent
vertices. An anti-adjacent pair is a pair of strongly anti-adjacent or
semi-adjacent vertices.

qQ/929

Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

10/22

Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

Definition

A realization of trigraph is any graph obtained by turning each
semi-adjacent pair into an edge or a non-edge. So a trigraph with
m semi-adjacent pairs has 2 realizations.

realization /

E—

10/22

Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

Definition

A realization of trigraph is any graph obtained by turning each
semi-adjacent pair into an edge or a non-edge. So a trigraph with
m semi-adjacent pairs has 2 realizations.

realization /

E—

Definition

The full realization of trigraph is the graph obtained by turning all
its semi-adjacent pairs into edges.

10/22

Definition

A trigraph is ISK4-free (resp. wheel-free, {ISK4,wheel}-free) if all
its realizations are ISK4-free (resp. wheel-free, {ISK4,wheel}-free).

The trigraph is not wheel-free
because it has a realization that
is not wheel-free.

U1 D B0

11/22

rr‘a]17at10ns

Definition

A clique in a trigraph is a set of pairwise adjacent (possibly
semi-adjacent) vertices, and a stable set is a set of pairwise
anti-adjacent (possibly semi-adjacent) vertices. A strong clique
(resp. strongly stable set) is a clique (resp. stable set) with no
semi-adjacent pairs.

stable set (not strong) ~_— clique (not strong)

12/929

We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

13/292

We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

@ Let's define all this!

13/292

We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

@ Let's define all this!

Definition

A trigraph is basic if it is either

@ a series-parallel trigraph (i.e. its full realization is a
series-parallel graph), or

@ a line trigraph? of a chordless graph of maximum degree at
most three, or

@ a complete bipartite graph.

?G is a line trigraph of a graph H if the full realization of G is the line graph
of H, and no semi-adjacent pair of G is in a triangle.

12/29

Definition

A trigraph is connected if its full realization is connected, and
otherwise, it is disconnected. A cutset of a trigraph is a (possibly
empty) set of vertices whose deletion yields a disconnected
trigraph.

full

realization

))

cutset cutset

14 /29

Theorem [Milani¢, P., Trotignon, 2015+

Every {ISK4,wheel}-free trigraph is either basic or admits a
clique-cutset (i.e. a strong clique that is a cutset) or a proper
2-cutset s.t. one of the induced “blocks of decomposition” is basic.

Proper 2-cutset:

c1co is an anti-adjacent pair
(possibly semi-adjacent)
G
G is connected, and neither
B#0

¢ nor ¢y is a cut-vertex.

A£D
blocks of
decomposition Fact: If G is {ISK4,wheel}-free,
then so are G4 and Gp.
c1 c1
Ga Gp
Co Co
A0 B#0

15/29

Theorem [Milani¢, P., Trotignon, 2015+

Every {ISK4,wheel}-free trigraph is either basic or admits a
clique-cutset (i.e. a strong clique that is a cutset) or a proper
2-cutset s.t. one of the induced “blocks of decomposition” is basic.

Proof: Imitate the proof of the decomposition theorem for
ISK4-free graphs (Lévéque, Maffray, Trotignon, 2012). Generalize
to trigraphs, but(!) consider only the wheel-free case.

@ The “jump” to trigraphs doesn't complicate the proof much;
the restriction to the wheel-free case significantly simplifies it.
A bit of extra work to get the "extreme” decomposition theorem.
@ This is algorithmic! There is a polynomial-time algorithm
that, given an {ISK4,wheel}-free trigraph G, either determines
that G is basic, or finds an “extreme decomposition” of G via
a clique-cutset or a proper 2-cutset. Q.E.D.

16/22

Onward to weighted trigraphs!

17/22

Onward to weighted trigraphs!

@ ldea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).

17/22

Onward to weighted trigraphs!

@ ldea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).

@ Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.

17/22

Onward to weighted trigraphs!

@ ldea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).

@ Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.

@ However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

17/22

Onward to weighted trigraphs!

@ ldea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).

@ Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.

@ However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

o Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G, w) into our algorithm for trigraphs and get an “ordinary”
a(G, w) for weighted graphs.

17/22

A weighted trigraph is an ordered pair (G, w) s.t. G is a trigraph,
and w is a weight function for G s.t.

@ to each vertex v of G, w assigns a non-negative integer
weight w(v), and

@ to each semi-adjacent pair uv of G, w assigns three
non-negative integer weights, w(uv), w(u, v), and w(v, u),
and these weights satisfy w(u, v), w(v, u) < w(uv).

w(uv)
w(v, u

w w(v,u)
o(u \ / o(v
l(z)\ 0 17 2 — ©

18/29

The weight of a set S of vertices in a weighted trigraph (G, w) is
the sum of the following three quantities:

@ the sum of all w(u) s.t. v € S;

@ the sum of all w(u,v) s.t. uv is a semi-adjacent pair of G
with ue Sand v ¢ S;

@ the sum of all w(uv) s.t. uv is a semi-adjacent pair of G with
u,v¢s.

a(G, w) is the maximum weight of a stable set of (G, w).

weight of S in (G, w):

(1434+11)+5+17 = 37

weight of S’ in (G, w):

(B+11)+(245)+17=38

10/29

Semi-adjacent pairs can imitate gems! (But without increasing the
number of vertices, and without introducing wheels.)

weighted graph

N

c,d<e
a
c weighted trigraph
e
d
.
b

20/22

Algorithm:
o Input: A weighted {ISK4,wheel}-free trigraph (G, w);
e Output: oG, w);
e Running time: O(n"), where n = |V(G)|.

21 /292

Algorithm:
o Input: A weighted {ISK4,wheel}-free trigraph (G, w);
e Output: oG, w);
e Running time: O(n"), where n = |V(G)|.

Outline:

21 /292

Algorithm:
o Input: A weighted {ISK4,wheel}-free trigraph (G, w);
e Output: oG, w);
@ Running time: O(n"), where n = |V(G)].

Outline:
@ Check if G is basic, and if so, find a(G, w) directly, and stop.

o This involves transforming the weighted trigraph (G, w) into a
weighted graph that has the same «, and then finding « in
that graph.

21 /292

Algorithm:
o Input: A weighted {ISK4,wheel}-free trigraph (G, w);
e Output: oG, w);
@ Running time: O(n"), where n = |V(G)].

Outline:
@ Check if G is basic, and if so, find a(G, w) directly, and stop.
o This involves transforming the weighted trigraph (G, w) into a
weighted graph that has the same «, and then finding « in
that graph.
@ If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

21 /292

Algorithm:
o Input: A weighted {ISK4,wheel}-free trigraph (G, w);

e Output: oG, w);
@ Running time: O(n"), where n = |V(G)].

Outline:
@ Check if G is basic, and if so, find a(G, w) directly, and stop.

o This involves transforming the weighted trigraph (G, w) into a
weighted graph that has the same «, and then finding « in

that graph.
@ If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).
© Compute « in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

21 /292

Algorithm:
o Input: A weighted {ISK4,wheel}-free trigraph (G, w);
e Output: oG, w);
@ Running time: O(n"), where n = |V(G)].

Outline:
@ Check if G is basic, and if so, find a(G, w) directly, and stop.
o This involves transforming the weighted trigraph (G, w) into a
weighted graph that has the same «, and then finding « in
that graph.
@ If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).
© Compute « in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).
© Then change weights in the other block, and (recursively)
compute «.

21 /292

That's all.

Thanks for listening!

29 /99

