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Definition
An ISK4 in a graph G is an induced subdivision of K4 in G . A
graph is ISK4-free if it contains no induced subdivision of K4.

Remark: An ISK4-free graph is in particular K4-free, so it has no
cliques of size greater than 3.
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Definition
A wheel is a graph that consists of a chordless cycle and an
additional vertex that has at least three neighbors in the cycle. A
graph is wheel-free if it contains no wheel as an induced subgraph.

Definition
A graph is {ISK4,wheel}-free if it is both ISK4-free and wheel-free.
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Theorem [Milanič, P., Trotignon, 2015+]
There is an algorithm with the following specifications:

Input: A weighted {ISK4,wheel}-free graph (G ,w) a;
Output: α(G ,w) b;
Running time: O(n7), where n = |V (G)|.

aThe weight function w assigns a non-negative integer weight w(v) to each
vertex v of G .

bα(G ,w) is the maximum weight of a stable set (i.e. a set of pairwise
non-adjacent vertices) of G with respect to w .
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State of the art for wheel-free graphs:
1 recognition is NP-complete (Diot, Tavenas, Trotignon, 2014);
2 maximum stable set problem is NP-complete (easy).

State of the art for ISK4-free graphs:
1 unknown complexity of the following problems: recognition,

maximum stable set, coloring;
2 decomposition theorem (Lévêque, Maffray, Trotignon, 2012).

State of the art for {ISK4,wheel}-free graphs:
1 decomposition theorem for {ISK4,wheel}-free graphs

(Lévêque, Maffray, Trotignon, 2012);
2 polynomial-time recognition algorithm for {ISK4,wheel}-free

graphs (Lévêque, Maffray, Trotignon, 2012);
3 {ISK4,wheel}-free graphs are 3-colorable + polynomial-time

algorithm to 3-color them (Lévêque, Maffray, Trotignon,
2012).
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2012).

5/22



Theorem [Lévêque, Maffray, Trotignon, 2012]
If G is an {ISK4,wheel}-free graph, then either:

G is a series-parallel grapha, or
G is the line graph of a chordless graphb of maximum degree
at most three, or
G is a complete bipartite graph, or
G admits a clique-cutset, or
G admits a proper 2-cutset.

aseries-parallel = no subdivision K4 as a subgraph
bchordless = all cycles are induced

A 6= ∅ B 6= ∅

c1

c2

Neither A ∪ {c1, c2} nor B ∪ {c1, c2}
induces a path between c1 and c2.

Proper 2-cutset:
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A 6= ∅ B 6= ∅

c1

c2

A 6= ∅

c1

c2

B 6= ∅

(G,w)

x

c1

y

z

c2

wB(x) = α(GA \ {c1, c2}, w)

wB(c1) + wB(c2) = α(GA, w)

wB(c1) + wB(z) = α(GA \ {c2}, w)

wB(c2) + wB(y) = α(GA \ {c1}, w)

wB(c2) = w(c2)

(GA, w) (GB, wB)

Attempt at handling
proper 2-cutsets:

The weight of the gem

gem vertices that lie

inside a maximum weighted

stable set of (GB, wB) is

supposed to be equal to the

weight of the part of a

maximum weighted stable

set of (G,w) that lies in

(GA, w).

gem

Need:

α(GB, wB) = α(G,w)
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Trigraphs to the rescue!

Trigraphs (introduced by Chudnovsky, 2003) are a certain
generalization of graphs in which some pairs of vertices have
“undetermined adjacency.”
There is a standard way to define {ISK4,wheel}-free trigraphs,
and we proved a decomposition theorem for this class of
trigraphs (similar to the graph case).
We defined weighted trigraphs (we put weights on vertices
and semi-adjacent pairs; motivated by proper 2-cutsets), and
we constructed a polynomial-time algorithm that finds the
maximum weight of a stable set in weighted
{ISK4,wheel}-free trigraphs.

Since every weighted {ISK4,wheel}-free graph is a weighted
{ISK4,wheel}-free trigraph, this will yield a polynomial-time
algorithm that finds the maximum weight of a stable set in a
weighted {ISK4,wheel}-free graph.
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Definition
A trigraph is a generalization of a graph in which there are three
types of adjacency:

strongly-adjacent pairs (“edges”),
strongly anti-adjacent pairs (“non-edges”),
semi-adjacent pairs (“optional edges” or “pairs of
undetermined adjacency”).

An adjacent pair is a pair or strongly-adjacent or semi-adjacent
vertices. An anti-adjacent pair is a pair of strongly anti-adjacent or
semi-adjacent vertices.
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Remark: Every graph is a trigraph. (Indeed, a graph is simply a
trigraph with no semi-adjacent pairs.)

Definition
A realization of trigraph is any graph obtained by turning each
semi-adjacent pair into an edge or a non-edge. So a trigraph with
m semi-adjacent pairs has 2m realizations.

realization

Definition
The full realization of trigraph is the graph obtained by turning all
its semi-adjacent pairs into edges.
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Definition
A trigraph is ISK4-free (resp. wheel-free, {ISK4,wheel}-free) if all
its realizations are ISK4-free (resp. wheel-free, {ISK4,wheel}-free).

realizations

The trigraph is not wheel-free

because it has a realization that

is not wheel-free.
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Definition
A clique in a trigraph is a set of pairwise adjacent (possibly
semi-adjacent) vertices, and a stable set is a set of pairwise
anti-adjacent (possibly semi-adjacent) vertices. A strong clique
(resp. strongly stable set) is a clique (resp. stable set) with no
semi-adjacent pairs.

clique (not strong)stable set (not strong)
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We proved an “extreme decomposition theorem” that states that
every {ISK4,wheel}-free trigraph is either “basic” or admits a
“cutset” so that one of the “blocks of decomposition” is “basic.”

Let’s define all this!

Definition
A trigraph is basic if it is either

a series-parallel trigraph (i.e. its full realization is a
series-parallel graph), or
a line trigrapha of a chordless graph of maximum degree at
most three, or
a complete bipartite graph.

aG is a line trigraph of a graph H if the full realization of G is the line graph
of H, and no semi-adjacent pair of G is in a triangle.
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Definition
A trigraph is connected if its full realization is connected, and
otherwise, it is disconnected. A cutset of a trigraph is a (possibly
empty) set of vertices whose deletion yields a disconnected
trigraph.

cutset cutset

full
realization
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Theorem [Milanič, P., Trotignon, 2015+]
Every {ISK4,wheel}-free trigraph is either basic or admits a
clique-cutset (i.e. a strong clique that is a cutset) or a proper
2-cutset s.t. one of the induced “blocks of decomposition” is basic.

A 6= ∅ B 6= ∅

c1

c2

Proper 2-cutset:

c1c2 is an anti-adjacent pair

(possibly semi-adjacent)

G is connected, and neither

A 6= ∅

c1

c2

B 6= ∅

c1

c2

G

GA GB

Fact: If G is {ISK4,wheel}-free,
then so are GA and GB .

blocks of

decomposition

c1 nor c2 is a cut-vertex.
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Theorem [Milanič, P., Trotignon, 2015+]
Every {ISK4,wheel}-free trigraph is either basic or admits a
clique-cutset (i.e. a strong clique that is a cutset) or a proper
2-cutset s.t. one of the induced “blocks of decomposition” is basic.

Proof: Imitate the proof of the decomposition theorem for
ISK4-free graphs (Lévêque, Maffray, Trotignon, 2012). Generalize
to trigraphs, but(!) consider only the wheel-free case.

The “jump” to trigraphs doesn’t complicate the proof much;
the restriction to the wheel-free case significantly simplifies it.

A bit of extra work to get the “extreme” decomposition theorem.
This is algorithmic! There is a polynomial-time algorithm
that, given an {ISK4,wheel}-free trigraph G , either determines
that G is basic, or finds an “extreme decomposition” of G via
a clique-cutset or a proper 2-cutset. Q.E.D.
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Onward to weighted trigraphs!

Idea: We assign weights to vertices and to semi-adjacent pairs
(each vertex gets one weight, and each semi-adjacent pair
gets three weights).
Warning: The weight of a set S of vertices depends on the
weights of the vertices inside S, and on the weights of all
semi-adjacent pairs in the trigraph (and not just those inside
the set S). This is needed because of proper 2-cutsets.
However: In the case of graphs (i.e. trigraphs with no
semi-adjacent pairs), we assign weights to vertices only, and
so we get an ordinary weighted graph (and the weight of a set
is calculated in the usual way: by summing up the weights of
vertices inside the set).

Thus, we can plug in a weighted {ISK4,wheel}-free graph
(G ,w) into our algorithm for trigraphs and get an “ordinary”
α(G ,w) for weighted graphs.
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Definition
A weighted trigraph is an ordered pair (G ,w) s.t. G is a trigraph,
and w is a weight function for G s.t.

to each vertex v of G , w assigns a non-negative integer
weight w(v), and
to each semi-adjacent pair uv of G , w assigns three
non-negative integer weights, w(uv), w(u, v), and w(v , u),
and these weights satisfy w(u, v),w(v , u) ≤ w(uv).

6 210

1

3

7

1

06

8

0 217

1

1

11

5 5 2

u v

w(u)
w(u, v)

w(uv)
w(v, u)

w(v)

11
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Definition
The weight of a set S of vertices in a weighted trigraph (G ,w) is
the sum of the following three quantities:

the sum of all w(u) s.t. u ∈ S;
the sum of all w(u, v) s.t. uv is a semi-adjacent pair of G
with u ∈ S and v /∈ S;
the sum of all w(uv) s.t. uv is a semi-adjacent pair of G with
u, v /∈ S.

α(G ,w) is the maximum weight of a stable set of (G ,w).

6 210

1

3

7

1

06

8

0 217

1

1

11

5 5 2

11

S

weight of S in (G,w):

(1+3+11)+5+17 = 37

(G,w)

S ′

weight of S ′ in (G,w):

(3 + 11) + (2 + 5) + 17 = 38
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Semi-adjacent pairs can imitate gems! (But without increasing the
number of vertices, and without introducing wheels.)

a

b

a

b

d

c

e

c

e

d

weighted graph

weighted trigraph

c, d ≤ e

20/22



Algorithm:
Input: A weighted {ISK4,wheel}-free trigraph (G ,w);
Output: α(G ,w);
Running time: O(n7), where n = |V (G)|.

Outline:
1 Check if G is basic, and if so, find α(G ,w) directly, and stop.

This involves transforming the weighted trigraph (G ,w) into a
weighted graph that has the same α, and then finding α in
that graph.

2 If not, then find an extreme decomposition (via a clique-cutset
or a proper 2-cutset).

3 Compute α in the basic block and some of its induced
subtrigraphs (possibly with slightly modified weights).

4 Then change weights in the other block, and (recursively)
compute α.
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That’s all.

Thanks for listening!
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